
IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501

 Vol.13, No 1, Jan- 2023

An Open-Source Approach to Bridging the Gap in Network

Hardware and Software
P.SHALLINI

1
,V.LAKSHMI

2
,LALLAM VASU

3
,

ASSISTANT PROFESSOR
1,2,3

,

DEPARTMENT OF ECE

PBR VISVODAYA INSTITUTE OF TECHNOLOGY AND SCIENCE::KAVALI

Abstract—

As network speeds increase to the tens of Gigabits per second

range, it will become more difficult to design packet processing

software capable of handling such massive data volumes. As a

result, it is clear that there is a need for an appropriate open-

source system that may serve as a prototype platform for

testing new network capabilities while guaranteeing line-rate

processing, precise timestamping, or decreased power usage.

All of these needs may be met using hardware-based systems

like NetFPGA, rather than only software. The primary barrier

to adopting such an open-source FPGA-based solution is the

time and effort needed for its creation. With the proliferation

of HLL-based circuit synthesis tools, it is now possible to

create hardware-based networking apps with a manageable

learning curve, in comparison to the usage of HDLs in the

past. In this article, we discuss how the new programming

paradigm of FPGAs made possible by state-of-the-art High-

Level Synthesis tools can feed current open-source hardware-

based platforms for networking applications. We contrasted

the time and effort required to construct a network flow

monitor using conventional hardware development methods

with the time and effort required to develop the same thing

using High-Level Languages. Initial findings are quite

encouraging, especially since the development period has been

cut from months to weeks.

Key words

Network Functions on Field-Programmable Gate

Arrays, High-Level Language, Hardware

Description Language, Packet Processing, High-

Speed Networks, High-Level Synthesis, Network

Flow Monitor.

TRANSITION TO D ATA LINK

The capacity of communication networks is

expanding rapidly as a result of technological

advancements. Current installations use interfaces

of 10 Gbps, although 40 and even 100 Gbps are

becoming more common. Packet processing

programmes need to be deployed within such high-

speed networks in order to perform several network

activities. Security (including firewalls, IDS/IPS,

and legal interception) and network performance

are two such examples (to analyse delay, jitter,

loss, or throughput). The processing infrastructure

must be adaptable enough to accommodate

application updates in a timely manner. For the

time being, it is most practical to employ software

that runs on conventional x86 processors due to the

large pool of readily accessible software engineers,

the simplicity of the method, the short development

cycles, and the inherent adaptability of software.

Newer network bit rates place strict demands on

performance, which are now unmet by software-

only solutions. High performance network drivers

are the foundation of open-source software for

super-fast networks (e.g. Packets Hader, PFRing, or

Intel DPDK). They perform well at 10 Gbps on

today's top-of-the-line commodity gear. It is

challenging to attain throughputs exceeding 10

Gbps reliably without packet losses, since access

speed between applications and network devices is

presently constrained. High and unpredictable

latency may result from the several hops that each

packet must make, rendering it unfit for use in

applications like high-frequency trading. As a final

point, software driver-based timestamping

introduces inaccuracy and jitter since it is

performed in batches rather than individually on

individual packets. As a result, these drivers cannot

guarantee line-rate low-latency processing at higher

speeds or provide precise packet timestamping

when required [1]. The offloading of some or all of

the packet-processing application to the network

device is an option when the performance of

software-based solutions falls short of expectations.

Looking back at the evolution of networking

technology, it's clear to see that specialised

hardware has always been used in state-of-the-art

packet processing gadgets. In reality, many NICs

already offload protocol operations (such TCP and

IPSec) to improve system efficiency by taking over

duties normally performed by software.

Unfortunately, there is very little room for

customization in these systems due to their

restricted nature. With NetFPGA [2], you may

create high-performance, open-source hardware

while offloading less important duties to software

on an x86 CPU.

WORK ON THE NETFPGA-10G

The open-source NetFPGA project highlights the

growing popularity of FPGA-based systems for

networking packet processing applications.

NetFPGA was originally developed as a research

and teaching tool, but it has now found widespread

use in the academic community as a means of

quickly prototyping novel approaches to future

network architecture. Stanford University and

Xilinx Research Labs [2] created NetFPGA with

contributions from the community. The core

components of NetFPGA-10G [5], the second-

generation edition, are a Xilinx Virtex-5 FPGA,

four full-duplex 10 Gbps Ethernet connections, and

a PCI Express card. The platform has two different

memory banks in addition to the FPGA's internal

memory (Block RAMs, with 18 Kbits per block)

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501

 Vol.13, No 1, Jan- 2023

for supporting a wide range of network

applications. In contrast to the second type's 288

MB of low-latency dynamic RAM, which is

designed for packet buffering, the first type's 27

MB of high-speed static RAM is optimised for

rapid lookup tables. The board can talk to a host

computer using PCI Express Gen 1 lanes.

However, the NetFPGA 10G platform just requires

a 12 V power supply, thus it may operate

independently (i.e., without being attached to any

PCI Express socket); this may be the best option

for running line-rate applications with a very low

power consumption. An overview of the hardware's

layout is shown in Fig. 1. As an open-source

platform, the NetFPGA-10G is useful for

researchers who want to create network

applications that make use of FPGAs. The

developer community has access to a central

database where they may store and trade code,

binaries, and other resources used in the creation of

software. The Xilinx Embedded Development Kit

is used in the creation of NetFPGA-10G

applications (EDK). Projects using the EDK are

split into two categories: a) those that focus on the

hardware platform implemented on the FPGA, and

b) those that focus on the software performed by

the embedded processor on the FPGA. The

hardware foundation relies on components such as

Ethernet MAC, PCI Express interface (PCIe),

integrated soft processor (MicroBlaze), direct

memory access (DMA), and user-created modules.

The designer decides which hardware cores should

be included in the FPGA platform. The embedded

processor is responsible for running the EDK

project's software and plays a crucial role on the

NetFPGA-10G since it is responsible for

configuring the Ethernet ports. While an EDK

project is used to build hardware and software for

the FPGA, a NetFPGA-10G project also contains

software code (such as drivers and user

applications) that will run on the FPGA.

Fig. 1: NetFPGA-10G structure.

produced by an x86 CPU. For connectivity between

the FPGA and the x86 host computer, PCI Express

is used. Together, these parts provide the

infrastructure required to create open-source

network applications that take full use of the power

of modern technology. Downloading the most

recent iterations of the available projects from the

public repository is the first step in a typical design

cycle for network applications on the NetFPGA-

10G, as illustrated in Fig. 2. (task 1). As a starting

point for the new design, the developers must

choose one that works best for them. The goal here

is to find ways to recycle existing features so that

more time can be spent actually building the new

thing. It is necessary to choose the host computer,

if any, and the FPGA software to execute first. To

make such a decision is to strike a balance between

the development time and the certainty in the

performance (number of clockscyles it takes to

execute) of each job. Following an HDL design

flow that includes Verilog or VHDL codification

and validation, developers will next construct their

own hardware modules (task 2.a) if they are not

already accessible in the repository; we emphasise

that this is the most time-consuming stage in the

design flow. To manage every Ethernet interface,

as many of these hardware modules as are required

may be made. When all of the modules have been

developed or modified, the next step is integration

(task 2.b), which involves linking them together

using on-chip communication protocols. The last

stage of designing an FPGA embedded system is, if

necessary, changing the embedded processor's

executable programme (task 2.c). After the

hardware and embedded software are ready to

execute on the FPGA, the following step of design

is the creation of the host computer operations that

are not time essential (task 3). A Linux PCI

Express driver is downloadable from the

NetFPGA-10G repository, and may be used as-is or

modified to suit your needs. In addition, user-level

programmes written in the traditional C/C++

software development cycle may work in tandem

with the aforementioned driver to tackle relatively

low-speed tasks. Developers may release their

work to the community whenever they are satisfied

with the design's functioning and have tested it

extensively (task 4).

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501

 Vol.13, No 1, Jan- 2023

Fig. 2: Typical design flow in the NetFPGA platform.

What follows is a breakdown of the time required

for development: Task 2.a requires many months

(70%-90% of the entire development time) and is

thus the most time-consuming. Second, there's Task

2.c, which may take a few days to complete

(depending on the applica tion), and then there's

Task 3, which, if implemented, would take many

weeks. Most of the remaining work may be

completed in a few hours by an experienced

engineer. Finally, the expense of software-based

advancements is substantially greater in terms of

person months. The FPGA programming

methodology makes the development of custom

hardware modules (task 2.a) the most time-

consuming part of the process. The Register

Transfer Level (RTL) is the highest level of HDL,

and it is used to build circuits using a model that

includes information on the flow of data and time

(RTL). Because HDLs give a higher degree of

abstraction than the circuit that ultimately executes

on the FPGA, the designer benefits from this fact.

HDL synthesis tools convert RTL model transfer

functions between registers into logic gates, but the

hardware registers maintain a one-to-one

correlation with their HDL RTL model

counterparts. Therefore, the time required to

establish an HDL design is much longer than that

required for software solutions, since HDL

codification entails fixing a-priori the architecture

of the hardware being implemented. As a result,

FPGAs have not found widespread use in the field

of networking. Time spent on job 2.a must be

shortened if we are to close the gap between

software and hardware network advancements and

enjoy the best of both worlds.

SAVING THE DAY: HIGH-LEVEL

LANGUAGES

Reduce hardware development time using modern

High-Level Synthesis (HLS). High-Level Synthesis

(HLS) tools modify the FPGAs' programming

paradigm, allowing for the incorporation of HLL at

the design capture stage. As a result, they water

down the distinction between a CPU and an

FPGA's programming model [6]. Different kinds of

High-Level Languages exist, from graphical

descriptions to ad hoc languages built from

extensions of more conventional ones. Although

HLS as a concept has been developed over many

years [7], only in the last few years have new

promising and effective tools become available.

Quick progress is being made in the electrical

sector towards the widespread use of these HLS-

based technologies. Many of them can take an

ANSI-C, C++, or SystemC source file and generate

HDL code. There are a number of reasons why

C/C++ have been so successful as a design entry.

For starters, there is a lot of pre-existing code and

almost all computer and electrical experts are

already acquainted with them. In many application

domains, including networking, C/C++ is the

language of choice for prototyping and

development. In addition, it is a logical method for

Hardware/Software co-design, beginning with a

software programme and then migrating to the

hardware those components that need additional

performance, while still making use of the same

language. Ca dance’s C-to-Silicon, Synopsys's

Symphony C Compiler, Calypte’s Catapult C,

Impulse's Codeveloper, Xilinx's Viv ado-HLS,

Blue spec’s BSC (Blue spec Compiler), Jacquard

computing's ROCCC 2.0 (Riverside Optimizing

Compiler for Config durable Computing), and blue

spec’s.

How HLL may aid in the hardware

design process

When using HLL, the first stages of

implementation are completed significantly more

quickly, and more of the possible design space may

be investigated in a shorter amount of time. Figure

3 suggests that software simulation is rapid enough

to go to the next iteration of the design process.

Therefore, there is no need for the time-consuming

and complicated HDL simulation stage.

Fig. 3: Hardware design flow using High-Level Langauges.

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501

 Vol.13, No 1, Jan- 2023

The hardware description language (HDL)

conversion from high-level language (HLL) to

hardware description language (C-to-hardware) is

also very effective and gives more insight into the

hardware's performance (number of cycles spent in

the execution, maximum frequency, area usage,

etc.). As a result, the designer may experiment with

several design possibilities or implement additional

features—all of which are more expensive when

implemented using HDLs—and get rapid feedback.

One of the most common complaints levelled

towards HLS tools is that, although they do cut

down on design time, they also compromise

performance by preventing architects from fine-

tuning the design at the lowest levels. Given the

expressiveness of HLL and the shorter

development time, these statements are debatable,

as shown by [6], [8]. As a result, the designers have

access to a significantly bigger design area than

they would have using the HDL method. While

hardware description languages (HDLs) may also

provide similar improvements, the programming

paradigm that revolves on RTL description requires

the implementation of a static architecture and

hence precludes future optimizations without

rewriting the code. In addition, HLLs obfuscate all

implementation details that aren't crucial to

performance (such as optimising state machines,

timing closure issues, resource allocation and

scheduling, etc.), freeing the designer to

concentrate on system-level performance problems

(such as processes communicating with one another

or storing data) that have a greater impact on

performance as a whole.

The HLL development methodology for

building hardware for use in

networking software

Unfortunately, the hardware characteristics and

parallelism required to create NetFPGA

applications are not built into the C/C++

programming language. Having these more

elements adds more complexity. Unfortunately,

there is not yet much uniformity in the HLS tools'

approaches to these problems. As of right now, a

well-executed hardware design is not the result of a

generic C/C++ code but rather of a code that has

been adapted for a certain architecture.

We utilised Xilinx's Viv ado-HLS software for this

project [9]. This programme can take an algorithm

model written in normal C/C++ and generate an

HDL description suitable for usage in Xilinx

FPGAs (such as the one present on the NetFPGA-

10G). In addition, the Viv ado HLS tool creates

HDL-code-free hardware cores that may be

dropped into an EDK project. This tool can create

circuits that are time-accurate since it takes into

account both the clock frequency and the intended

device. The delay associated with each job, as

measured in terms of clock cycles, is reported.

Consequently, much like HDL-designed hardware,

there is no jitter in the tasks themselves (for

example, when timestamping packets). So-called

directives (#pragma statements) may be used to

take use of parallelism, pipelines, regulate latency,

specify interfaces, and other hardware

characteristics if the processing requirements are

not met by the original code. Even though the tool

creates a module for each clock domain, dual-clock

FIFOs may be used at the EDK level to glue the

created cores for each domain together when

several clock domains are present. The usage of

HLL simplifies the most complicated and time-

consuming phase of developing the processing

logic executed on each packet. For instance, a dual-

clock FIFO may be used to interface the 10G-MAC

clock domain to the DMA domain if an application

needed to analyse all the Ethernet packets it

received and deliver aggregated information to a

software layer on the x86 machine. HLL model

capture will be used for the development and

verification of all user-added intelligence (i.e.,

processing and communication).

CONCLUSION

Compared to solutions based on commodity x86

hardware, the performance and predictability of

packet processing systems developed in FPGA are

clearly superior. However, most network engineers

find it unappealing due to the time and money

needed for development. Surprisingly, the advent

of new High-Level Synthesis tools offers hope for

overcoming these challenges. Current FPGA-based

platforms, such as the free and open-source

NetFPGA-10G, may benefit greatly from the use of

state-of-the-art HLS tools, as we have shown here.

In addition, we have described the most significant

obstacles that prevent High-Level Languages from

gaining general acceptance. FPGAs now have a

programming paradigm that makes it possible to

capture designs using HLL, cutting down

application development time from months to

weeks when compared to a conventional hardware

development flow based on hardware description

languages (HDLs).

This article demonstrates how to create hardware-

based network applications without familiarity with

HDLs via the production of flow records at 10

Gbps line-rate. In addition, the performance and

hardware resource utilisation of solutions

developed using a high-level design process were

found to be satisfactory. In doing so, the

groundwork is laid for an HLL-based (usually

C/C++) application framework for packet

processing. The framework would further abstract

hardware specifics, enabling the traditionally wide

gap between software and hardware development

in networking applications to be closed.

IRACST – International Journal of Computer Networks and Wireless Communications (IJCNWC), ISSN: 2250-3501

 Vol.13, No 1, Jan- 2023

REFERENCES

[1] V. Moreno, P. Santiago del Rio, J. Ramos, J. Garnica, and

J. GarciaDorado, “Batch to the Future: Analysing Timestamp

Accuracy of High-Performance Packet I/O Engines,”

Communications Letters, IEEE, vol. 16, no. 11, pp. 1888 –

1891, november 2012.

[2] M. Blott, J. Ellithorpe, N. McKeown, K. Vissers, and H.

Zeng, “FPGA Research Design Platform Fuels Network

Advances,” Xcell Journal, pp. 24–29, 2012.

 [3] J.-P. Deschamps, G. Sutter, and E. Cant, Guide to FPGA

Implementation of Arithmetic Functions, ser. Lecture Notes in

Electrical Engineering. Springer, 2012, vol. 149. [Online].

Available: http://dx.doi.org/10.1007/978-94-007-2987-2

[4] J. Schonw ¨ alder, A. Pras, and J.-P. Martin-Flatin, “On

the future ¨ of Internet management technologies,”

Communications Magazine, IEEE, vol. 41, pp. 90–97, Oct

2003.

 [5] “NetFPGA-10G board description,” 2012. [Online].

Available: http://netfpga.org/10G specs.html

[6] Xilinx Inc., Introduction to FPGA Design with Vivado

HighLevel Synthesis. UG998, July 2013. [Online]. Available:

http://www.xilinx.com/support/

 [7] G. Martin and G. Smith, “High-level synthesis: Past,

present, and future,” IEEE Design & Test of Computers, vol.

26, no. 4, pp. 18–25, 2009.

 [8] A. Cornu, S. Derrien, and D. Lavenier, “HLS tools for

FPGA: Faster development with better performance,” in

Reconfigurable Computing: Architectures, Tools and

Applications. Springer, 2011, pp. 67–78.

[9] Xilinx Inc., Vivado Design Suite User Guide. HighLevel

Synthesis. UG902, July 2012. [Online]. Available:

http://www.xilinx.com/support/

 [10] C. Estan, K. Keys, D. Moore, and G. Varghese, “Building

a better NetFlow,” in ACM SIGCOMM Computer

Communication Review, vol. 34, no. 4. ACM, 2004, pp. 245–

256.

 [11] M. Forconesi, G. Sutter, and S. Lopez-Buedo, “Open

source code of nf bram and nf qdr,” 2013. [Online]. Available:

https://github.com/hpcn-uam/HW-Flow-Based-Monitoring

 [12] M. Forces, G. Sutter, S. Lopez-Buedo, and J. Aracil,

“Accurate and flexible flow-based monitoring for high-speed

networks,” Field Programmable Logic and Applications, 2013.

http://dx.doi.org/10.1007/978-94-007-2987-2
http://www.xilinx.com/support/
http://www.xilinx.com/support/
https://github.com/hpcn-uam/HW-Flow-Based-Monitoring

